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ABSTRACT

As the affordability of new aircraft and missile systems becomes an essential element of new
development programs, the time spent in the early design (conceptual and preliminary design) needs to be
reduced. This paper will address the time and activities associated with the conceptual and preliminary
design of an aircraft, the role of the aerodynamicist in this early design period and the tools that he uses.
The question of how the design time can be shortened will be discussed and what the aerodynamicist can
do about it.

INTRODUCTION

The Skunk Works has adhered to the motto "Quick, Quiet, Quality" in the development of many
new and unique aircraft for over fifty years (Figure 1). The "Quality" was because the customer deserved
(and demanded) it. The "Quiet" was because many of the Skunk Works programs were (and still are)
"Black". The "Quick" was because "Time Is Money" and the faster a new product could be brought to the
market, the less it cost. With the current world-wide emphasis on low cost and affordability, Quick is an
essential new program parameter.

The design and development of a new aircraft (or missile) is naturally a serial set of tasks. Ideally,
things should be done in order so that nothing has to be done over as new information becomes available. A
notional serial schedule (to first flight) for developing an aircraft (excluding avionics and propulsion) is
shown in Figure 2 (green depicts the conceptual design phase, yellow the preliminary design phase and the
blue is the detail design). Unfortunately, this leads to a very long schedule and an expensive product. For
Figure 2 it is 42-54 months from the start of conceptual design to first flight (with no problems that would
stretch out the schedule). It is faster and cheaper if tasks can be done in parallel provided a serious design
flaw doesn't precipitate scrapping a long and expensive task (ie; tooling and fabrication of parts).
Typically, aircraft schedules are driven by the development of the VMS (vehicle management system,
flight control), the engine (if it is a new engine) or delivery of the landing gear (simply because there are
so few landing gear suppliers and they are very busy).

The Skunk Works has been relatively successful in shortening the time between contract award for a new
design (usually the end of conceptual design) and first flight as shown on Figure 3. The two aircraft, A-12
and YF-22, that contradict this trend have reasonable explanations. The original schedule for the Mach 3+
A-12 was 20 months to first flight. The program turned out to be a tremendous technical challenge for the

Paper presented at the RTO AVT Symposium on "Aerodynamic Design and Optimisation of Flight Vehicles in a
Concurrent Multi-Disciplinary Environment", held in Ottawa, Canada, 18-2T October 1999, and published in RTO MP-35.
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Figure 1. 50 Years of Skunk Works Aircraft
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Skunk Works in the early 1960s (mixed compression inlet with translating spike, 85% titanium due to 600
'F surface temperature, fuels and lubricants operating at 350 'F, and the J 58 engine) and the program first
flight slipped 10 months. Eight months after the dem/val contract award (October 1986) for the YF-22,
the Lockheed team scrapped their prototype configuration and started over leading to the current
configuration OML freeze in May 1988 and first flight in September 1990.

The Skunk Works success in reducing the time to first flight has been due partly to a close
association and trust between LMSW and their customers leading to minimal specs, reviews and
documentation. Also, being a quiet or black program helps shorten the schedule by keeping out the "lookie-
loos". But most of the reduced time has come from parallel tasking (concurrent development) and
encouragement to use off-the-shelf (OTS) equipment, either Mil-Spec or commercial. Having an
experienced, enthusiastic and "workaholic staff of engineers, designers and manufacturing people always
helps also.
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It should be noted that the times shown on Figure 2 represents about half of the development time
for a new aircraft. After first flight there is 3-4 years of developmental flight test (contractor clear- the-
envelope testing, operational test and evaluation, etc.). In the past, the normal development program for a
new aircraft was typically 8-10 years. With the emphasis on reducing cost, the industry is doing more
concurrent development to reduce the total development time. The Skunk Works F- 117 took 5 years to
IOC (Initial Operational Capability) and the JASSM (Joint Air-to-Surface Standoff Missile) will take 76
months.

PARALLEL TASKING (CONCURRENT DEVELOPMENT)

Parallel tasking or concurrent development means overlapping the task blocks shown in Figure 2
as much as possible. This is always dangerous as decisions are made many times during the program
before having a complete set of data or based upon predictions. For example:

1. The outer mold line (OML) is frozen before aerodynamics, propulsion and RCS testing is
completed.

2. Structural loads are estimated before the wind tunnel testing is completed so that the structural
design can proceed earlier.

3. Flight control laws are developed before the wind tunnel testing is completed so that the flight
control software and hardware development can proceed earlier.

The risk associated with this parallel tasking depends upon the complexity of the design and the
maturity of the functional analysis codes (ie; CFD and CEM). The U-2A flew in 8 months because the
design was simple, subsonic and stable and the structural design was started very early based upon
predicted loads. The loads were verified later and found to be very close to the predicted loads (lucky or
good?).

The risks associated with parallel tasking are mitigated by the formation of a vehicle IPT
(Integrated Product Team). The vehicle IPT meets weekly with all personnel involved in the development
of the vehicle. The people represented on the IPT include the functional engineering plus manufacturing,
RMS, avionics, flight test and cost. These meetings address and resolve downstream issues before they lead
to a conflict and impact schedule. The old practice of one group completing its task and throwing the
results over the wall to the next group inevitably lead to sub-optimization and conflicts.

The use of OTS equipment (either Mil-spec or commercial) will usually lead to a form/fit penalty
for the design but will greatly reduce the risk of a schedule slip. It is a good policy to demand that any
new equipment item "buy" its way onto the vehicle by showing that OTS equipment will not work. The F-
1 17A used the flight control computer from the F-16A, cockpit displays from the F-18A, landing gear
from the F-15 and brakes from the Gulfstream II.

ROLE OF THE AERODYNAMICIST IN THE DESIGN PROCESS

The aerodynamics group is at the center of activity during conceptual and early preliminary design
because they "own" the OML (outer mold line) through their control of the configuration aerodynamic
characteristics and performance. In conceptual design they define the initial configuration sketches and size
the vehicles for the design group. Using their sizing tool they perform the design trades (wing loading,
aspect ratio, sweep, thrust-to-weight, etc) and mission trades (range, payload, speed, etc). The design trades
quickly reduce the design space and the mission trades answer the "what if' questions for the customer.
The aero group is not working in a vacuum during this period because all disciplines are involved through
the IPT process. The aero group, with help from propulsion, flight controls and RCS, develop the
configuration OML for a baseline design.

During preliminary design the aero group leads the vehicle IPT towards the PSC (preferred
system concept) by conducting configuration trade studies using a vehicle synthesis (sizing) tool. They then
predict the configuration S&C characteristics for the flight controls group and verify the data base with
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high fidelity wind tunnel tests. The aero group also works with the loads group to predict vehicle loads and
verify the loads data base with high fidelity wind tunnel tests. Once these two important data sets are
generated the center of activity shifts to designing and building the vehicle and integrating (stuffing) the
subsystems (propulsion, flight control, ECS, etc) into the vehicle. The aero group continues to refine the
PSC aerodynamics and performance.

Looking once again at Figure 2, it is quite clear that if aero doesn't do their assignment the whole
schedule slides to the right. If aero misses on their wind tunnel test and has to modify the model and re-
enter the wind tunnel, structural design and flight control law development slips. The responsibility of the
aero group is to get it right the first time and shorten the design process. All engineering functions, but
especially aero, must sharpen their analysis tools to consider multi-disciplinary issues. These tools must be
user friendly and rapid turnaround.

RAPID CONCEPTUAL DESIGN (RCD)

LMSW uses a program called Rapid Conceptual Design or RCD to shorten the time spent in
conceptual design, potentially reducing the cycle time in half. This software tool is used by the
aerodynamics group to perform the multidisciplinary trades and optimization studies leading to the baseline
design.

The implementation of RCD with its distributed modeling and analysis software package reduces
the time to perform the multidisciplinary trades and optimization studies in three ways. First, the passage of
data from one tool to another is automated (historically this has been done off-line and has been a major
consumer of time). Secondly, the output from one analysis that is input for another analysis is scheduled
automatically within the program and passed between modules as required. Finally, the RCD software
automates system trades by enabling automated multivariable parametric studies and optimizations to be
conducted (providing rapid resizing of the design when individual parameters in standalone disciplines are
changed).

Conducting a multidisciplinary trade study by conventional methods is a time consuming process
dominated by the reformatting, transforming, and translating of data between design disciplines and
analysis modules. In order to conduct trade studies and evaluate a design, data must be passed from one of
these analysis tools to another. Efficient design analysis and optimization requires data handling and
initiation of appropriate analysis codes independent of interactive user input. The resulting design
architecture can yield significant improvements in turnaround times as well as a substantial reduction of
non-value added tasks performed.

The effective evaluation of a design at the conceptual level requires the integration of multiple
disciplines. Currently there are many conceptual analysis tools from all the major disciplines utilized in the
design process. Throughout the design process the output of one analysis is repeatedly used as input for a
subsequent analysis. Multidisciplinary design software can facilitate this process by providing scheduling
of the analysis codes and communication between the codes. Also, different classes of vehicles require the
use of different analysis codes. Analysis tools do exist which combine portions of major disciplines into a
single working environment in order to eliminate the need for translation of data. The primary drawback of
these historically complex and aging codes is that they apply to a predetermined set of design problems and
are difficult to expand, modify and maintain.

The objective of RCD was to develop a design tool to facilitate multidisciplinary design analysis
and optimization at the conceptual level, and that would have the flexibility to address non-traditional
design problems. Traditionally, vehicle design optimization is a chain of sub-optimizations of single
disciplines (two-dimensional gradient or hill climbing). Trade studies are conducted on individual
components or subsystems (i.e. wing, engine, fuel system, hydraulic system, etc) using an analysis code
tailored for the particular item. The results of the trade are then passed to the other design disciplines,
which in turn analyze the impact of the trade on their area of responsibility. If the affected disciplines
approve of the trade, their components or subsystems are modified and the change distributed to the
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remaining design disciplines for evaluation. This two-dimensional process of change and evaluation is
repeated until the design is closed. Unfortunately, this path along local optimums can very often miss a
global optimum solution.

Multidisciplinary design problems are by their very nature, extremely interconnected and
nonlinear. Therefore, in searching for an optimum solution, one cannot simply assume that a given solution
is optimal in the global sense simply because the solution may be optimal locally. The problem then
becomes one of not simply 'climbing the hill' but rather, first finding the hill that is the tallest, and then
climbing. The methods employed to solve this type of problem must therefore have the ability to either
avoid local minimums all together or escape them once they are encountered in order to be effective. This
fact alone puts traditional gradient based methods at a disadvantage, as the optimum solution which they
locate is dependant largely upon the point in the function space at which they started. Non-gradient based
methods such as genetic algorithms, for instance, are better suited to addressing the problem of locating a
global optimum, but typically do not converge to a solution as effectively as gradient based methods.
Ideally, a non- gradient based method would be used to determine which is the tallest hill, and a gradient
based method to climb it. This 'hybrid' optimization strategy allows gradient and non -gradient methods to
be employed in a complimentary fashion in order to most efficiently address the problem. The relative
strengths of these methods are exploited while their respective weaknesses are neglected, thus yielding the
analytical benefits of both. Future growth plans for RCD include the implementation of this capability.

The flexibility of RCD to address non-traditional design questions was incorporated by developing
a framework that would allow the integration of existing analysis and optimization codes in a modular
format in which the designer could choose appropriate analysis tools based on the level of fidelity required
and type of problem the designer is facing. The user could then decide which data should be sent from one
tool to the next in order to provide an efficient environment for performing the multidisciplinary
optimization. Once this data is linked it is sent between analysis tools automatically thus allowing the
designer to focus on the design problem. The Rapid Conceptual Design process as illustrated in Figure 4 is
based upon the premise that all the systemic variables of the system should be available and monitored
from a central location or framework. The analysis tools supplying these variables however, should be free
to run on any platform independent of the controlling framework.

INPUTS OPT

-Requirements - Trade Studies
Consrains SSTEM C -Optimizations- Constraints VARIABLES

-Etc. - SYSTEMICitie

RUD software allows the integration of
separate analysis components into a

common design environment< :

Figure 4 The RCD Process



4-8

RCD Case Study

The RCD program was recently used on a very unique problem where the solution vehicle
bordered on the fringes of the classical design space. Due to the unique nature of the problem, the
sensitivity of the design to operational methods / modes and systems design options was not initially well
understood. The lack of known design drivers coupled with the limited duration of the study (only 48 days)
meant that development of the vehicle by standard design methods could result in a sub optimal
configuration. The customer had indicated that a solution to the problem existed and that the current effort
would be competing with the existing solution on a cost basis. Therefore a design that met the technical
requirements would not ensure a contract win. Optimization of the design would be required to increase the
odds of a contract award. The only way to accomplish an integrated vehicle optimization effort in the time
allotted was to employ Rapid Conceptual Design (RCD) techniques.

As previously mentioned, the proposed vehicle would be competing against an existing solution
on a cost basis; as a result the primary design goal was to produce a minimum cost vehicle. For aerospace
vehicles weight (i.e. size) is usually the primary cost driver. Thus the goal for the sizing code would be to
minimize weight. If the proposed vehicle could be shown to outperform the existing solution on a cost
basis, the next phase would most likely be a fixed price development program. Since cost is strongly related
to size, the sensitivity of the solution vehicle's size to changes in subsystem performance and material
weight and strength properties needed to be well understood. Without this data appropriate margins could

not be added to cost model.

The uniqueness of this particular vehicle design made it difficult to determine many of the initial
design values. Having linked sizing modules and a sizing routine, which allowed time-efficient closed
vehicle parametric trades greatly de-emphasized the need for accurate initial design values. The final
system model is a testament to the above statements. It consisted of 23 analysis modules, 87 inputs, passed
122 design values between the individual sizing modules, and had 107 output design values . Sixty three of
the 87 model input parameters were varied during the course of the design study to determine the
sensitivity of the design to individual input values. The final 20, two dimensional, 5 x 5 design point
parametric runs were conducted in a 20 hour period whereas using conventional methods these trades
would have taken weeks to run). The end result of the final 20 parametric trades was a vehicle whose size
was reduced by 33%. One of the parametric trades revealed that the current design philosophy was 180
degrees out of phase with the actual physical phenomenon. The customer and the design team, at that time,
believed that relaxing a particular constraint would have a positive effect on the vehicle. In actuality the
vehicle size decreased as the constraint was tightened. Another parametric trade addressed the distribution
of a design requirement between two different systems that were tasked to satisfy that requirement. The
optimal distribution from a standalone system analysis (based on the incorrect belief described in the above
parametric trade discussion) was to have one of the two systems satisfy 100% of the requirement. The final
parametric trade of these systems revealed that the optimal solution was indeed a distributed share of the
duty. These two parametric trades together were responsible for 28% of the 33% weight reduction. This
illustrates the true power of multidisciplinary design optimization: The identification of counterintuitive
solutions with optimums that can only be identified through multidisciplinary design.

Automated data transfers greatly reduced the time required to complete vehicle aerodynamic
build-ups. Automated parametric trade studies significantly reduced the time to perform parametric
analysis. RCD models linking standalone analysis tools also reduced the time required to evaluate the
effects of a system parameter change at the vehicle level by an order of magnitude. Finally, complete
integration of the multidisciplinary trades and optimization through the application of the RCD
methodology has enabled the identification of optimal solutions that are counter intuitive and functions of
multiple design disciplines.

The Rapid Conceptual Design Methodology

A required step in the RCD process is the creation of an 'integrated system model'. The system
model should be capable of sizing the vehicle when given the design constraints. There are several steps to
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creating the integrated system model. First the type of system which can best perform the mission must be
determined from the design requirements. Next candidate configurations, systems architectures,
subsystems, materials, etc. must be identified. For each candidate system the design input and output
parameters must be identified.

Sizing modules, which determine the output design parameters given the input design parameters,
must be selected or created. These sizing modules must then be integrated (i.e. the modules must be tied
together such that the required information is passed between modules). Finally, a sizing closure module
must be created to compile final design values and check for constraint compliance and design closure.

After the system model has been developed and verified, the optimization function (i.e. what
constitutes the optimal vehicle) must be defined. The optimization function is usually a weighted function
of the highest priority design parameters (range, speed, cost, etc.). Once the optimization function is
defined, the optimum vehicle can be determined by varying the independent sub-system design inputs. The
sensitivity of the optimal design to the design constraints can then be studied by performing parametric
trades on each of the design constraints.

The next step in the RCD implementation process was to define a comprehensive list of
disciplines and the information required from each discipline to design and develop an aircraft at the
conceptual level. A sample minimum set of disciplines for an aircraft design trade study are: aerodynamics,
propulsion, weights, thermodynamics, performance, stability and control and cost. Analysis tools capable
of providing the minimum functionality in each discipline were assembled and integrated. With the basic
library of analysis tools completed, verification cases and new design studies were conducted to evaluate
the utility of implementing the RCD methodology in the conceptual design phases with the use of the
distributed modeling and analysis tools.

Ideally, RCD software also provides an efficient user environment for the assembly and storage of
individual analysis components into an integrated tool for the purpose of subsequent multidisciplinary
design. These features will typically be tailored to the preferences of the user in order to extract maximum
utility from the tool itself and subsequently ensure continued use of the code. The framework modularity
allows the suite of available tools to be expanded to include future analysis tools. In addition, platform
independent integration software allows analysis modules to be simultaneously coordinated on multiple
computing hardware platforms.

STEREOLITHOGRAPHY (SLA) MODELS

In the past, wind tunnel testing of vehicle shapes was reserved for the preliminary design phase
because of the time and expense involved. Typical high fidelity models for low speed wind tunnel testing
cost several hundred thousands of dollars and took 3-4 months to fabricate. This cost and time was not
appropriate for the conceptual design phase.

During this decade a model making process has been developed which has drastically reduced the
cost and time of fabricating high fidelity, low speed wind tunnel models. This process, called
stereolithography or SLA, consists of using a UV-curable epoxy resin and an ultraviolet laser to create
plastic models from a 3-D file. In this process, the CAD (computer automated drawing) part file is
converted to cross-sectional layers, or "slices "of the part .006 inches thick. Using the laser, the SLA
machine draws a layer of the part onto the resin, curing a thin cross-section of the part being built. The part
is then lowered .006 inches, and recoated with resin. The laser then draws the next layer, which attaches to
the previous layer. In this way a part is "grown" layer by layer.

The SLA parts do not have the strength required for large high speed wind tunnel models but do
very well for small (approximately 10 percent) and low speed (less than Mach 0.25) model testing. With
the SLA process small, high fidelity, low speed models can be built for less than $10K and two weeks from
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the time the NC tape of the loft is provided to the SLA operator. This cost and time fits within the
conceptual design phase and competes with CFD for doing configuration trades.

The stereolithography process can be used for making parts for things other than wind tunnel
models. At LMSW, SLA is used for making display models, RCS models, lay-up molds, patterns for
molds, burnout patterns for investment casting, jig drill plates and welding jigs and example parts for
proposals.

ADVANCED SYSTEM SYNTHESIS AND EVALUATION TECHNIQUE (ASSET)

The RCD methodology is extremely effective when employed during conceptual aircraft design
as several concepts are simultaneously considered, analyzed and pertinent trade studies conducted in order
to explore the design space. During conceptual and early preliminary design, the aero group at LMSW uses
a higher fidelity analysis tool called ASSET (Advanced System Synthesis and Evaluation Technique) to
provide the detail necessary for more focussed trade studies.

ASSET is an analytical design program and data integration tool which analyses the vehicle
configuration, weight, and cost through mission and performance analysis. It is a comprehensive data
integrating system and analysis tool consisting of contributions from all of the technical disciplines during
the early phases of aircraft design. It combines data from configuration design, propulsion, mass properties
(structures, materials and weights), aerodynamics, subsystems, cost, and program requirements. All of
these disciplines contribute data based on the design concept, customer requirements, and a technology
level.

The main function of ASSET is to size (dimensions and weight) the aircraft to meet design
criteria. A measure of merit such as the lowest cost, or the lowest weight is the most often used design
criteria. To accomplish aircraft sizing, ASSET evaluates the impact of requirements imposed on the design
by mission profiles and performance constraints. Parametric studies, where vehicle design parameters are
varied, are used to determine impact of constraints across a range of designs. Sample parameters are the
thrust-to-weight ratio to represent power plant size, and wing loading to represent airframe size. ASSET
can vary these parameters and others to create performance, weight, cost and mission data for comparison
purposes. These parameters are often plotted on carpet plots, which show the valid, invalid, and critical
regions of the design space. Using these parametric methods, ASSET can rapidly evaluate alternate
configurations during the design process.

It should be noted at this point that ASSET is not simply a back of the envelope' calculation
procedure to quickly generate airplane performance parameters and weights. ASSET requires input from
technical disciplines and large amounts of propulsion, aerodynamics, and weight data are required. This
often requires time and personnel to acquire data and includes cooperation by several departments (e.g.
acquiring engine performance tables or wind tunnel data).

One of ASSETs main features is its geometry routine which will grow or shrink (subject to
realistic constraints of crew station, engines, weapons, etc) the configuration to accommodate a change in
wing area, engine size, payload or fuel required. Design rules are entered to accomplish the dimension
changes. Too often sizing programs will determine the increase in fuel required but not adjust the
configuration dimensions to accommodate the fuel. ASSET does not mislead the engineer with this fault.

Lockheed Martin began incorporating ASSET's analysis routine with the NASA Ames Aircraft
Synthesis Tool (or ACSYNT) in 1993, forming the ASCENT program. The main menu of ASCENT
provides a selection for most disciplines involved with aircraft design. Selecting most of these options will
allow the user to edit the portion of the ASSET input file used by these disciplines. Another feature of
ACSYNT is its parametric geometry modification capablility, accessed by the user in a 3-D parametric
aircraft conceptual modeler. Employing this feature of the ASCENT program, the taper ratio and aspect
ratio, for example, may be changed by altering values on the GEOMETRY template. When these
parameters are changed, the entire B-spline surface definition of the vehicle is modified automatically.
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Once the geometry is defined, aerodynamic analysis can be performed. A Lockheed-developed
extension to ACSYNT allowed the parametric geometry to be analyzed by VORLAX, DATCOM, and
WAVEDRAG II. The program then processes the output of these aerodynamic analyses and passes it on to
ASSET for synthesis evaluation.

AERODYNAMIC PREDICTION CODES

LMSW uses a stable of CFD codes to predict the S&C characteristics, drag and loads during
conceptual and preliminary design. These codes are:

Name Code Type Grid Type Application Full Config
Setup Time

VORLAX Potential Flow Vortex Conc Design, S&C, <1 hour
Lattice Prelim Loads

Quadpan Potential Flow 3D Panel Conc Design, S&C, 4-8 hours
Aero Flowfield

Splitflow Euler Intern Gen Aero/Prop Flowfield 4-8 hours
Hybrid Cartesian
Prismatic

COBALT Euler/Navier Stokes Unstructured Prelim Design I week
(Wright Labs) Polyhedral Prop Integration

USM3D Euler/Navier Stokes Unstructured Aero Flowfield 1-4 weeks
(LaRC) Tetrahedral Analysis, Loads

Penquin Parabolized NS Structured High Mach Aero/ Prop 1-4 weeks
Hexahedral Flowfield Analysis

ENS3D Euler/Navier Stokes Structured Prelim Design, Aero/ 1-4 weeks
Hexahedral Prop Flowfield Analysis

The first three codes have full configuration setup times less than 8 hours and run times of
minutes (VORLAX and Quadpan) to hours (Splitflow) and are used extensively during conceptual design
to evaluate different configurations. The remaining CFD codes have setup and run times that limit their
application to the fine tuning of baseline designs. In addition to the above CFD codes, LMSW has a
complete stable of CEM (computational electromagnetic) codes for RCS predictions.

SUMMARY

The aerodynamicist is at the center of the early design of an aircraft or missile as he "owns" the
configuration OML through his control of the aerodynamics data base and performance. The
aerodynamicist must have tools to predict the aerodynamics, S&C, performance and loads that are accurate
and rapid turn-around. With these tools the aerodynamicist can reduce the time spent in early design
(conceptual design to OML freeze).
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DISCUSSION

Keynote Session, Paper #4

Dr Khalid (NRC, Canada) offered thoughts on need for both structured and unstructured codes
as each was suited to particular types of problem that were likely to be encountered in initial
design.

Dr Nicolai concurred.

Mr Woodford (DERA, UK) wondered whether aerodynamicits were in fact the people best
qualified to drive the overall design of an air vehicle, for example given likely pressures to
ensure an affordable design.

Dr Nicolai sought to confirm that he had not intended his comments to apply to the
overall vehicle design, but merely to its outer mold line (OML). He did not believe that
OML was a first order cost driver.

Herr Sacher (DASA, Germany) wondered whether the design team's interactions described in
the paper would still work if the teaming were "virtual".

Dr Nicolai suggested that, whereas the interactions probably would work if the teaming
were virtual, his preference was still for collocation, given the importance of direct
personal contact.

Mr Templin (NRC, Canada) requested amplification of the author's assertion that "the
aerodynamicists own the OML", citing as an example the F- 117 where the shape was clearly
constrained by other disciplines.

Dr Nicolai accepted that aerodynamicists might very well have constraints, sometimes
significant constraints, imposed on them but, nevertheless, they are the group that has to
ensure that the vehicle will "fly". He was adamant that whatever these constraints might
be, this responsibility determined that no-one was able to modify the OML without
aerodynamics approval.

Prof Straznicky (Carleton University, Canada) wondered how much interaction there was
between aerodynamics and the other disciplines in the early conceptual design phase.

Dr Nicolai replied that the interaction described took place through normal operation of
the IPT. He noted that this met at least weekly. He further noted that ideally all
disciplines should be collocated "so that there is no excuse for not getting together daily".


